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ABSTRACT: The current GFDL seasonal prediction system achieved retrospective sea ice extent (SIE) skill without

direct sea ice data assimilation. Here we develop sea ice data assimilation, shown to be a key source of skill for seasonal sea

ice predictions, in GFDL’s next-generation prediction system, the Seamless System for Prediction and Earth System

Research (SPEAR). Satellite sea ice concentration (SIC) observations are assimilated into the GFDL Sea Ice Simulator

version 2 (SIS2) using the ensemble adjustment Kalman filter (EAKF). Sea ice physics is perturbed to form an ensemble of

ice–oceanmembers with atmospheric forcing from the JRA-55 reanalysis. Assimilation is performed every 5 days from 1982

to 2017 and the evaluation is conducted at pan-Arctic and regional scales over the same period. To mitigate an assimilation

overshoot problem and improve the analysis, sea surface temperatures (SSTs) are restored to the daily Optimum

Interpolation Sea Surface Temperature version 2 (OISSTv2). The combination of SIC assimilation and SST restoring

reduces analysis errors to the observational error level (;10%) from up to 3 times larger than this (;30%) in the free-

runningmodel. Sensitivity experiments show that the choice of assimilation localization half-width (190 km) is near optimal

and that SIC analysis errors can be further reduced slightly either by reducing the observational error or by increasing the

assimilation frequency from every 5 days to daily. A lagged-correlation analysis suggests substantial prediction skill im-

provements from SIC initialization at lead times of less than 2 months.
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1. Introduction

Arctic sea ice has undergone rapid changes in recent de-

cades, which imposes threats on the wildlife and local people

whose habitats largely rely on sea ice. Meanwhile, it brings

economic opportunities including marine fishing, more direct

shipping routes through the Arctic, and petroleum extraction.

Predicting Arctic sea ice, especially in the summertime, has

great implications for environmental protection, human ac-

tivity regulations, and stakeholder decision making.

Recent work has shown that coupled Earth system models

are capable of making skillful seasonal predictions of Arctic

sea ice (e.g., W. Wang et al. 2013; Chevallier et al. 2013;

Sigmond et al. 2013; Msadek et al. 2014; Smith et al. 2015;

Bushuk et al. 2017; Batté et al. 2020). Evaluations of several

state-of-the-art modeling systems’ Arctic sea ice prediction

skill revealed that the lack of knowledge of sea ice initial

conditions is one of the major limitations of current forecasts

(Dirkson et al. 2019). Four out of the six evaluated climate

models in Dirkson et al. (2019) use sea ice observation–

constrained initializations (Table 1), and the data assimila-

tion method applied in these systems ranges from simple

nudging to three-dimensional variational approaches. Despite

the growing spatial and temporal coverage of satellite obser-

vations of Arctic sea ice, large initial errors remain in the

current major subseasonal to seasonal prediction systems

(Zampieri et al. 2018). Additionally, perfect model studies,

which estimate the upper limit of predictability of a particular

model, have demonstrated a large skill gap between current

operational prediction systems and their potential prediction

skill (Bushuk et al. 2019a). These findings imply an opportunity

to improve sea ice data assimilation (DA) techniques to make

better use of the existing observations and advance prediction

capability.

Previous sea ice DA studies either designed perfect model

observing system simulation experiments (OSSEs) to test

various DA techniques or assimilated real observations in a

variety of ice–ocean models. The DAmethods actively applied

in the sea ice community include nudging (e.g., K. Wang et al.

2013; Lindsay and Zhang 2006), optimal interpolation (e.g.,

Stark et al. 2008), three-dimensional variational approach (3D-

VAR) (e.g., Caya et al. 2010; Toyoda et al. 2015), and ensemble

Kalman filters (EnKFs) (e.g., Massonnet et al. 2015; Kimmritz

et al. 2018; Zhang et al. 2018; Fritzner et al. 2019). These

methods involve different levels of complexity and computa-

tional cost. All have proven to reduce the difference between

the model states and observations efficiently. They differ in

how relative weights are given to the model and observations,
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whether and how the covariance matrices of the model states

are calculated, and how other nonobserved model states are

affected. 3D-VAR and EnKFs consider spatially varying error

covariance matrix of the model states, and the latter addi-

tionally considers the temporal dimension (Liu et al. 2019). A

variant of EnKF, the ensemble adjustment Kalman filter

(Anderson 2001), is applied in this study.

All studies find that the assimilation of sea ice concentration

(SIC) leads to significant reductions of errors in SIC or sea ice

extent (SIE) (e.g., Lisæter et al. 2003; Stark et al. 2008; Mathiot

et al. 2012; Sakov et al. 2012; Kimmritz et al. 2018; Zhang et al.

2018), while they have different conclusions as to whether SIC

DA improves sea ice thickness (SIT). Most studies agree that

SICDAhas limited influence on SIT (e.g., Lisæter et al. (2003);
Sakov et al. 2012; Kimmritz et al. 2018; Zhang et al. 2018),

whereas Stark et al. (2008) find some impact of SIC DA on the

thinnest ice category, and Mathiot et al. (2012) and Tietsche

et al. (2013) show that SIC DA is also able to significantly

improve grid cell-averaged SIT. Both OSSEs and observation-

based DA studies show that SIT DA can significantly improve

the modeled SIT (e.g., Yang et al. 2014; Xie et al. 2016; Chen

et al. 2017; Mu et al. 2018; Zhang et al. 2018; Fritzner et al.

2019). The assimilation of SIT observations is challenging

given the large errors and short temporal coverage of satellite

retrievals (Zygmuntowska et al. 2014) and the lack of spatial

representativeness of observations from ground, submarine, or

airbornemeasurements (Lindsay and Schweiger 2015). Blockley

and Peterson (2018) directly assimilated satellite-retrieved winter

SIT data into an ice–ocean model and showed improvements in

the summer pan-Arctic SIE and ice edge predictions, indicating

the potential benefits of this challenging task.

Among the dynamical models that contribute to the

September Arctic sea ice forecasts collected by the Sea Ice

Outlook (SIO), more than half of them assimilated sea ice

observations into their initial conditions as of 2019 (Bhatt et al.

2020). The Geophysical Fluid Dynamics Laboratory (GFDL)

forecast model is among the other half that have not con-

strained their initializations with sea ice observations. This

paper aims to build a sea ice DA framework within a GFDL

sea ice/ocean model, find the proper DAmethods to maximize

the utility of SIC observations, explore the benefits of

improved sea ice initial conditions for summertime Arctic sea

ice predictions at short lead times, and lay foundations for DA

of other observation types in the future.

In this study, we assimilate satellite SIC observations within

the GFDL sea ice–ocean model. We develop an SIC DA

control run, and test various DA configurations to explore

how sensitive our DA results are to the choices we make. We

describe the model setup and data assimilation system, ob-

servations assimilated, experimental design, and evaluation

methods in section 2. The DA results are discussed in

section 3, followed by the summary and conclusions in

section 4.

2. Data and methodology

a. The sea ice–ocean model and data assimilation system

The sea ice simulator version 2 (SIS2; Adcroft et al. 2019)

developed at the Geophysical Fluid Dynamics Laboratory is

used in this study. SIS2 employs an elastic–viscous–plastic

rheology to calculate internal ice forces (Hunke and Dukowicz

1997) and an energy-conserving thermodynamic scheme with

four ice layers and one snow layer, similar to Bitz and

Lipscomb (1999). Multiple ice thickness categories are simu-

lated, between which sea ice moves due to dynamic or ther-

modynamic changes (Bitz et al 2001). The default setting of five

sea ice thickness categories is used, with category boundaries of

0.1, 0.3, 0.7, and 1.1m. SIS2 is coupled with GFDL’s Modular

Ocean Model version 6 (MOM6) (Adcroft et al. 2019) and is

forced by the Japanese 55-year Reanalysis (JRA55-do) (Tsujino

et al. 2018) that spans from 1958 to 2017.

We create an interface between SIS2 and the Data

Assimilation Research Testbed (DART) to conduct data as-

similation (DA) experiments. DART is a software developed

at the National Center for Atmospheric Sciences (NCAR)

(Anderson et al. 2009). DART provides a variety of ensemble-

based data assimilation algorithms and has been linked with all

the components of the Community Earth System Model

(CESM) for atmosphere (Raeder et al. 2012), ocean

(Danabasoglu et al. 2012), land (Zhang et al. 2014), and sea ice

(Zhang et al. 2018) DA.

TABLE 1. List of models discussed in section 1. Modified based on Table 1 in Dirkson et al. (2019).

Center Model

Sea ice component/

physics

Resolution

(8)
Observations assimilated

in sea ice initialization

DA

method

DA

frequency

ECMWF SEAS5 (Johnson

et al. 2019)

LIM2, implicit ice

categories, EVP

0.25 SIC 3DVAR Every 5 days

CMC CanCM3 (Merryfield

et al. 2013)

SIC/SIT, cavitating

fluid

2.8 SIC Nudging Daily

CMC CanCM4 (Merryfield

et al. 2013)

SIC/SIT, cavitating

fluid

2.8 SIC Nudging Daily

GFDL FLOR (Vecchi

et al. 2014)

SIS1, five ice

categories, EVP

1 None; constrained by ocean

and atmosphere DA

— —

Météo France SYSTEM 6 (Dorel

et al. 2017)

GELATO v6, five ice

categories, EVP

1 NONE — Daily

U.K. Met Office GloSea5 (MacLachlan

et al. 2015)

CICE, five ice

categories, EVP

0.25 SIC 3D VAR Every 2 days
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The SIS2/MOM6 model writes out restart files when ob-

servations are to be assimilated and sends the selected model

state variables from the restart files to DART. In this study,

the state variable is the SIC of each category (SICN). The

thickness of each category remains unchanged as suggested

by previous work (Kimmritz et al. 2018; Zhang et al. 2018).

DART then calculates the aggregate SIC in the observation

operator and combines it with observations through the filter

to generate the analysis states. Certain postprocessing is

necessary before the analysis states replace the model states

in the restart files to avoid unphysical values generated from

the filter. When the analysis aggregate SIC is greater than

one, SICN is scaled proportionally to make the aggregate SIC

equal one. When the analysis SIC goes negative, SICN is set

to zero. A five-layer sea ice profile is created when sea ice is

added by the filter in places where sea ice was absent. The

added SICN has the middle-point thickness in its category

and is snow-free (the midpoint thickness given in category 5 is

1.3 m). The added sea ice has a bulk salinity of 5 ppt, and its

temperature is calculated based on the liquidus relation as a

function of brine salinity fromAssur (1958). The updated restart

fields serve as the initial conditions for the next DA cycle.

We use the ensemble adjustment Kalman filter (EAKF)

(Anderson 2001), a variant of the ensemble Kalman filter

(EnKF) (Evensen 1994), to assimilate observations in this

study. The EAKF does not perturb the observations as the

traditional EnKF does and shows outperformance when the

ensemble size is small (Anderson 2001). The EAKF requires

an ensemble of sea ice states to estimate the error statistics of

the model state. The ensemble size we choose is 30 in this

study. The ensemble of SIS2/MOM6 simulations is created by

perturbing a set of sea ice parameters, including the ice

strength parameter P* from Hibler (1979) and the albedo pa-

rameters of snow R_snw, ice R_ice, and pond R_pnd from

Briegleb and Light (2007). The sea ice strength parameter P*

is chosen randomly from a uniform distribution spanning

from 20 000 to 50 000Nm21, which covers the default value of

27 500Nm21. The albedo parameters are each chosen inde-

pendently from a uniform distribution spanning from 21.6 to

1.6 standard deviations, while the default value is 0. The re-

sulting ensemble spread of sea ice concentration is discussed in

section 3a.

b. Observations

The SIC products fromNimbus-7 SMMRandDMSP SSM/I-

SSMIS passive microwave data downloaded from the National

Snow and Ice Data Center (NSIDC) website are used in the

study. The product retrieved using the NASA Team (NT) al-

gorithm (https://nsidc.org/data/nsidc-0051) is assimilated and

the product retrieved using the bootstrap (BT)method (https://

nsidc.org/data/nsidc-0079) is used for additional evaluation.

The daily Optimum Interpolation Sea Surface Temperature

version 2 (OISSTv2) (Reynolds et al. 2007; Banzon et al. 2016)

product is used to constrain SST. We apply the SIC data that

comes with OISST to mask out SST values at grid cells where

SIC is larger than 30%.

c. Experimental design

We list the configurations of all the experiments in Table 2.

The FREE experiment does not assimilate any observations

but has the same perturbed parameters as theDAexperiments,

with each ensemble member having a unique set of the four

parameters. To reduce thermohaline drift, the surface salinity is

restored globally to a climatology based on observations at the

piston velocity of 1/6mday21 (Griffies et al. 2009) correspond-

ing to a time scale of 300 days for a 50-m length scale (Table 2 in

Danabasoglu et al. 2014). Salinity restoring is applied to all the

experiments, both in the open ocean and under sea ice.

The experiment DA-noSSTrest assimilates the NSIDC SIC

observations every 5 days but has no SST restoring. The ob-

servational error we choose is 10%, which is within the range of

the values used in previous SIC DA studies (e.g., Lisæter et al.
2003; Kimmritz et al. 2018) and agrees reasonably well with

error estimates of SIC observational products (e.g., Meier

2005). The horizontal localization half-width distance is 0.03

radians (about 190 km).

To ameliorate an overshooting problem identified in DA-

noSSTrest (the problem is further discussed in later sections),

we restore the SST to the daily OISST value with a piston

velocity of four meters per day. We apply a sea ice mask to the

observed SST data so that SST is only restored to observations

where SIC is below 30%. The sea ice mask is derived from the

SIC data in the OISST product and is applied to avoid using

unreliable SST observations in the Arctic region in the version

TABLE 2. List of experiments with different configurations.

Experiment

name

SST

restoring

Assimilation

of SIC

Localization half-width (radians/

approximated in km)

Observation

error

DA

frequency

Experiment

period

FREE N N — — — 1982–2017

noDA-SSTrest Y N — — — 1982–2017

DA-noSSTrest N Y 0.03/190 10% Every 5 days 1982–2017

DActr Y Y 0.03/190 10% Every 5 days 1982–2017

DALocS Y Y 0.01/64 10% Every 5 days 1982–91

DALocL Y Y 0.05/320 10% Every 5 days 1982–91

DAErrS Y Y 0.03/190 5% Every 5 days 1982–91

DAErrL Y Y 0.03/190 15% Every 5 days 1982–91

DAFreqH Y Y 0.03/190 10% Every day 1982–91

DAFreqL Y Y 0.03/190 10% Every month 1982–91
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of OISST product we use (Lu et al. 2020). The threshold value

of 30% is chosen based on sensitivity tests (30% performs the

best among the threshold values of 10%, 25%, and 30%). In

the regions where SIC is above 30%, we restore SST to the

freezing point of seawater calculated based on the modeled

salinity. We conduct an experiment (noDA-SSTrest) with SST

restoring but no SIC DA to evaluate the sole effects of SST

restoring on the sea ice field.

The DActr is our DA control experiment that has the same

DA configurations as DA-noSSTrest and does SST restoring

with the same piston velocity as noDA-SSTrest. We also con-

ducted a set of DA sensitivity experiments stemming fromDActr

to investigate the influence of the localization half-width, obser-

vation error, and DA frequency on the DA results. The experi-

ments DALocS and DALocL use a smaller and a larger

localization half-width, 0.01 radians (about 64 km) and 0.05 ra-

dians (about 320km), respectively. The observation errors in the

experiments DAErrS and DAErrL are 5% and 15%, respec-

tively. The experiments DAFreqH and DAFreqL assimilate ob-

servations every day and every month, respectively.

A single-member SIS2/MOM6 simulation forced by JRA55-

do is run from 1958 to 1979 to provide a ‘‘spun-up’’ ice-ocean

state to be used as initial conditions for the ensemble simula-

tions. A separate SIS2/MOM6 experiment that has 30 ensem-

ble members with the same set of perturbed parameters is then

run from 1979 to 1981, from which the ensemble of initial

conditions is obtained for the DA experiments. The experi-

ments FREE, noDA-SSTrest, DA-noSSTrest, and DActr are

each run for 36 years from 1982 to 2017, and the set of DA

sensitivity experiments run for 10 years from 1982 to 1991.

d. Two additional experiments from GFDL’s seasonal

prediction systems

We compare our DA experiments with two additional ex-

periments from the current and next-generation versions of

GFDL’s seasonal prediction system. The ensemble coupled

data assimilation (ECDA) system (Zhang et al. 2007) is based

on GFDL’s fully coupled climate model CM2.1 (Delworth

et al. 2006) with atmosphere constrained by the NCEP–NCAR

reanalysis and ocean constrained by temperature and salinity

profiles and satellite SST observations (Zhang et al. 2007; Chang

et al. 2013; Xue et al. 2017). The sea ice state in this system is

constrained via fluxes associated with assimilation in the atmo-

spheric and oceanic components (Bushuk et al. 2019b). The

Seamless System for Prediction and Earth System Research

(SPEAR) is a new prediction system developed at GFDL with

updated versions of the atmosphere, land, ocean, and sea ice

component models (Delworth et al. 2020). The configuration

of the sea ice and ocean models in SPEAR is the same as that

of this study except that our study perturbs four sea ice param-

eters as described in section 2a. The initial conditions for sea

ice in this system come from an experiment that nudges atmo-

sphere and SST toward the Climate Forecast System Reanalysis

and daily OISST (SPEAR-Nudged hereafter; Lu et al. 2020).

Both ECDA and SPEAR-Nudged constrain the atmosphere

by reanalysis and ocean by observations. They are most com-

parable to the experiment noDA-SSTrest in terms of their

configuration. Comparing our DA experiments with ECDAand

SPEAR-Nudged provides insights on the relative improvements

from more advanced model components and the additional in-

formation from sea ice DA.

e. Evaluation methods

The root-mean-square error (RMSE) and mean absolute

error (MAE) are used to evaluate the general performance of

all the experiments. They are defined as follows:

RMSE
j
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where RMSEj is the RMSE of SIC at the jth grid cell,

RMSEregion is the mean RMSE of SIC for a specified subre-

gion, MAEregion,i is the MAE of SIC for a subregion in the ith

month, x is the ensemblemean of themonthly SIC for each grid

cell from the model experiments, y is the observed SIC, i is the

index in time, j is the index in space, N is the number of years,

M is the number of grid cells in a specified subregion, and aj is

the areal weight of the jth grid cell. We do not evaluate indi-

vidual ensemble members so x always refers to the ensem-

ble mean.

Model bias is defined as the 30-member ensemble mean of

the model outputs minus the observations. The detrended

Pearson correlation is defined as follows:

R5
�
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where R is the detrended correlation between model x and

observation y, i is the index in time, x and y are linear trend fits

to the data, and N is the sample size.

3. Results

a. The ensemble spread of sea ice concentration

For data assimilation with ice–ocean models or ice-only

models, perturbing only initial conditions is not sufficient to

maintain a reasonably large ensemble spread. Different ap-

proaches have been used to generate ensemble members and

maintain ensemble spread in previous studies. The majority

force the ice models with an ensemble of atmospheric fields, by

adding random fields to a single atmospheric forcing (e.g.,

Lisæter et al. 2003; Mathiot et al. 2012; Massonnet et al. 2015),

employing an ensemble atmospheric forcing coming from an

ensemble-based reanalysis product (e.g., Zhang et al. 2018;

Yang et al. 2015), or adding perturbations from an ensemble
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reanalysis system to a deterministic forcing (e.g., Shlyaeva et al.

2016). Very few studies consider uncertainty from model

physics. Zhang et al. (2018) perturbed an albedo parameter

and a sea ice strength parameter in addition to forcing the ice

model with an ensemble atmospheric reanalysis and found that

perturbing model physics increases ensemble spread through-

out the year but has little effect inwinter along the sea ice edges.

Shlyaeva et al. (2016) found that perturbing an ice strength

parameter, an ice-albedo parameter, and ice–atmosphere and

ice–ocean drag coefficients increases the ensemble spread of SIC

in the 0%–10% and 90%–100% ice concentration areas. Since

the parameters are static, it also helps sustain the ensemble spread

of the model states over time.

We choose to perturb an ice strength parameter and three

albedo parameters and force the ice–ocean model with a single

atmospheric forcing (JRA-55-do). To evaluate the general

performance of our perturbation method, we show the 36-yr-

average ensemble standard deviation of SIC every othermonth

in Fig. 1. The spatial pattern of the ensemble spread looks very

similar to those of other studies: the spread is the largest in the

ice marginal zones and small in the internal ice pack throughout

the year. The ensemble spread is generally sufficiently large to

encompass the observed sea ice edge, suggesting that the filter

should be well behaved when assimilating observations. A no-

table exception to this is the Pacific sector in winter, where the

ensemble spread is quite limited. Perturbing more parameters,

for example, the drag coefficients, may introducemore spread in

winter. But examining the effects of different approaches on the

SIC ensemble spread is outside the scope of this study, which

focuses primarily on summer Arctic sea ice.

b. Evaluation of the sea ice DA experiments

Figure 2 shows the seasonal cycle of RMSEregion of SIC

(calculated against the NSIDC NT observations) for seven

selected subregions and the pan-Arctic from all the experi-

ments. RMSEs result from a combination of (i) climatological

FIG. 1. The 36-yr mean ensemble spread for every other month from the experiment FREE with black contours representing the cli-

matological sea ice edge from the NSIDC NT observations from 1982 to 2017.
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biases, (ii) errors in interannual variability, and (iii) errors in

the trend. We begin by assessing the full RMSE in Figs. 2–4,

and assess the contributions of these three factors in subse-

quent figures. The FREE experiment consistently has the

largest RMSEregion in all the regions throughout the year.

The errors are mostly concentrated in the seasonal ice zones

so RMSEregion is relatively low in the winter months in all

the regions except the Greenland, Iceland, and Norwegian

(GIN) Seas and Barents Sea (these regions are nearly ice-

free in summer). Figure 3 displays the spatial pattern of

RMSEj from our four experiments, together with ECDA and

SPEAR-Nudged for reference. Figure 3 confirms that model

errors are concentrated on the ice marginal regions. Large

errors appear in the GIN Seas and the Barents Sea in March

and June. In September, FREE has a hotspot in the Beaufort

Sea, and ECDA has the largest errors around the Laptev

and Kara Seas. The pan-Arctic averaged RMSEj values

of noDA-SSTrest and SPEAR-nudged are similar and dis-

tinctly less than ECDA (Fig. 3). This indicates that, even

without ocean data assimilation, the newer generation model-

ing system shows some improvement over the older ECDA

system.

FIG. 2. The 36-yr mean seasonal cycle of RMSEregion of SIC. RMSEregion of SIC is calculated against the NSIDC

NT observations for each month across the selected the pan-Arctic regions for the experiments FREE (blue),

noDA-SSTrest (orange), DA-noSSTrest (purple), and DActr (red). Each error bar represents two standard de-

viations of RMSEregion calculated from a bootstrap procedure.
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FIG. 3. The 36-yr mean March, June, and September RMSEjs of SIC for our four experi-

ments (FREE, noDA-SSTrest, DA-noSSTrest, and DActr), ECDA, and SPEAR-Nudged.

Numbers on each plot indicate the RMSEpan-Arctic. RMSEs are calculated against the NSIDC

NT observations.
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SST restoring reduces the RMSEregion from FREE in all the

regions (experiment noDA-SSTrest in Fig. 2), especially in the

GIN Sea, Barents Sea, Beaufort Sea, Chukchi Sea, and East

Siberian Sea (Fig. 3). Relative to the FREE experiment, the

pan-Arctic averaged RMSEj decreases by ;18%, 11%, and

24% in March, June, and September, respectively (Fig. 3). The

experiment SPEAR-Nudged has a very similar spatial pattern

of SIC RMSEj to noDA-SSTrest. SPEAR-Nudged has slightly

smaller errors in the Atlantic sector and larger errors in the

Pacific sector in March and June. SPEAR-Nudged outperforms

noDA-SSTrest in September, especially in the Beaufort and

Chukchi Seas (Fig. 3).

The experiment DA-noSSTrest shows a more homoge-

neous error reduction across the whole Arctic, bringing the

RMSEregion below 15% inmost areas except theGINSea and the

Barents Sea inMarch (Fig. 3). Relative to the FREE experiment,

the pan-Arctic averagedRMSEj is reduced by;28%, 34%, and

49% in the three selected months. Combining SST restoring

and SIC DA, the experiment DActr performs the best among

all the experiments. It further reduces RMSEregion to a similar

FIG. 4. MarchMAEregion,i of SIC for the GIN Seas and the Barents Sea, and September RMSEt for the rest of the

Arctic regions for the experiments FREE (blue), noDA-SSTrest (orange), DA-noSSTrest (purple), and DActr

(red). MAEregion,i is calculated against the NSIDC NT observations.
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magnitude to the observation error (10%) in all the regions.

Compared with DA-noSSTrest, the most obvious improve-

ment is seen in the GIN Seas, Barents Sea, and the Canadian

Archipelago (Figs. 2 and 3). The pan-Arctic averaged RMSEj

is reduced by ;38%, 42%, and 54% in the three months as

compared with those of FREE.

We look at the interannual variations ofMAEregion,i of SIC in

Fig. 4, focusing onMarch in the GIN Seas and Barents Sea, and

on September in the other regions. In general, the performances

of the DA experiments have similar features to those in Fig. 2.

FREE has the largest errors throughout the experiment period,

noDA-SSTrest reduces error from FREE in all the regions, and

DA-noSSTrest reduces more biases. In September, DActr does

not show an obvious improvement over DA-noSSTrest except

in the Canadian Archipelago and the first 20 years of the ex-

periment in the pan-Arctic. In March, it is clear that SST re-

storing provides additional error reduction to SIC DA in the

GIN Seas and the Barents Sea.

The RMSE and MAE values provide an overall SIC error,

whereas biases show the systematic differences between the

model and observations. Figure 5 displays the seasonal cycle of

regional and pan-Arctic sea ice extent (SIE) for the DA ex-

periments. Both NSIDC SIC products are plotted, which

offers a brief view of the uncertainty in observations. The SIE

of a region is defined as the total area of grid cells in that region

where ice coverage exceeds a certain threshold. We use the

same threshold as the NSIDC sea ice index products, which is

15%. The pan-Arctic SIE from FREE has an overall positive

bias throughout the year. The positive biases show up in the

GIN Seas and the Barents Sea inwinter and become prominent

in the Beaufort Sea and the Chukchi Sea in summer (Fig. 5).

The spatial pattern of SIC bias shown in Fig. 6 confirms that

FREE in general overestimates sea ice cover. SST restoring

(the experiment noDA-SSTrest) reduces the positive bias in

SIE in all the regions (Figs. 5 and 6).

The March and June positive biases in SIC in the Barents

Sea and September positive biases in SIC in the Beaufort Sea

and the Chukchi Sea are almost removed by SIC DA (the

experiment DA-noSSTrest in Fig. 6). However, the negative

biases in FREE still show up in DA-noSSTrest; for example,

the red spots in the Laptev Sea, East Siberian Sea, and Kara

Sea in FREE can also be found in DA-noSSTrest. While the

negative errors and positive errors in SIC partly cancel out in

FREE, the asymmetric correction on the biases from SIC DA

could lead to degradation in SIE. This partly explains whyDA-

noSSTrest shows worse SIE than FREE in several months in

those regions (Fig. 5), but shows overall reductions in RMSE of

SIC (Fig. 2). This suggests that SIC DA is able to efficiently

remove sea ice but is less effective at adding sea ice. The ad-

dition of sea ice requires both SST restoring and SIC DA, as

evidenced by the improved performance of DActr compared

to the DA-noSSTrest experiment.

We also identify the problem that SIC DA sometimes

overcorrects the positive biases and flips the sign to negative,

which can be found in the GIN Seas in June and in the East

Siberian Sea in September (Fig. 6). This overshooting problem

also contributes to the degradations of SIE in those regions and

months (Fig. 5). This happens when DA abruptly removes sea

ice and triggers the ice-albedo feedback. The reduction of sea

ice decreases the surface albedo, which increases the amount of

solar radiation that is absorbed by the ocean. This warms up

SST, enhances bottom melting, and reduces more sea ice (see

Fig. S1 in the online supplemental material). However, if we

restore the SST to the observations (OISST), the ice-albedo

feedback is damped and the overshooting problem is amelio-

rated as shown in Figs. 5 and 6.

The time series of March and September SIE in Fig. 7 show

the SIE trends and interannual variations captured by the dif-

ferent experiments and observations. The two observations

show quite consistent trends. We show linear trends of the

March and September SIE in Fig. 8. FREE generally underes-

timates the decreasing trends. The experiment DA-noSSTrest

has better trends of September SIE in the East Siberian Sea,

Chukchi Sea, Beaufort Sea, and pan-Arctic region. By adding

SST restoring, the experiment DActr does not perform as well

as DA-noSSTrest in terms of trends. Figure 7 shows that SST

restoring is mainly influential in the first 20 years if we compare

noDA-SSTrest to FREE and DActr to DA-noSSTrest.

To figure out why SST restoring shows different perfor-

mance in the first and second halves of our experiment period,

we look at the spatial maps of the SIC bias in selected months

in 1990 (Fig. S2) and 2010 (Fig. S3), which show quite different

patterns (similar spatial patterns are found in other years

within each period). SIC bias in the FREE experiment in 1990

is generally positive in the Beaufort, Chukchi, and Barents

Seas, and negative in the East Siberian, Laptev, and Kara Seas.

The negative biases are largely reduced in noDA-SSTrest. DA-

noSSTrest, however, does not correct the negative biases or

even increases the magnitude of the negative biases, while it

reduces the positive biases effectively. DActr combines the

advantages of the two and outperforms all the other experi-

ments. By contrast, the SIC bias in FREE is mostly positive in

the year 2010.While SICDA alone is very effective at removing

sea ice, there is not much residual error for SST restoring to

correct, which partly explains why DActr does not show signif-

icant improvements fromDA-noSSTrest, especially in summer.

Another cause is the asymmetric correction from SST restoring

due to the fact that we apply a sea ice mask to the observed SST

data so that SST is only restored to observations where SIC is

less than 30%.When a negative SIC bias exists (SST has a warm

bias accordingly), restoring to the colder SST helps formnew sea

ice; however, when a positive SIC bias exists in regionswhere the

observed SIC is greater than 30% (SST might have a cold bias;

this mostly happens in summer), SST is restored to a salinity-

based freezing point, which does not promote sea ice melting. In

another situation, when a positive SIC bias exists in regions

where the observed SIC is less than 30% (this mostly happens in

winter), SST is restored to the OISST Daily data and hence will

enhance sea ice melting. In summary, SST restoring can correct

negative SIC biases effectively year-round, which complements

the SIC DA. Its effectiveness on positive SIC biases is more

complicated and depends on whether sea ice is present in the

biased regions, which varies with space and time.

Figure 7 shows that compared to the satellite observations,

the experiments can capture the interannual variations of

September SIE in the Arctic. We further look at the detrended

15 MARCH 2021 ZHANG ET AL . 2115

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/07/21 09:26 PM UTC



correlations between the modeled SIE and the observed SIE

for different months (Fig. 9). Since SPEAR-Nudged provides

sea ice initial conditions for the new seasonal prediction

system developed at GFDL, a comparison between SPEAR-

Nudged and DActr will provide insights into the potential

improvements brought by SIC DA. As expected, FREE gener-

ally has the lowest correlation. SPEAR-Nudged and noDA-

SSTrest have similar correlation values in general.DA-noSSTrest

improves the correlations and DActr consistently performs

the best. The improvement seen from noDA-SSTrest (or

SPEAR-Nudged) to DActr suggests that using initial con-

ditions from DActr has the potential to substantially im-

prove the short-term prediction skill of Arctic sea ice.

c. The sensitivity of DA results to different DA

configurations

The DA configurations we test in this study include the lo-

calization half-width, observation error, and DA frequency.

Previous studies generally set up DA configurations based on

assumptions and rarely explore the sensitivity of sea ice DA

FIG. 5. Seasonal cycle of regional and pan-Arctic sea ice extent (SIE) for the experiments FREE (blue), noDA-

SSTrest (orange), DA-noSSTrest (purple), and DActr (red), the NSIDC NT observations (black solid), and the

NSIDC BT observations (black dashed).

2116 JOURNAL OF CL IMATE VOLUME 34

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 05/07/21 09:26 PM UTC



FIG. 6. MeanMarch, June, and September biases of sea ice concentration (SIC) for four of our

experiments, ECDA, and SPEAR-Nudged. Bias is calculated as model minus the NSIDC NT

observations. Numbers on the map are the area-weighted average of absolute mean biases over

the grid cells where SIC either from observation or models is higher than 1%.
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performance to those configurations. We aim to analyze the

relative importance of each choice and provide guidance for

future sea ice DA systems. The 10-yr mean RMSE of selected

months for each set of experiments is shown in Fig. 10. TheDA

performance is most sensitive to DA frequency across all the

regions. Although its sensitivity depends on seasons, increasing

the DA frequency has a clear advantage. The result suggests

that assimilating SIC observations every month is not fa-

vorable (however, it still shows significant improvements

over FREE), and that daily assimilation provides the best

results. We assimilate observations every 5 days in this study

as a compromise of the computational cost and DA perfor-

mance. Higher-frequency DA is suggested in future online sea

ice DA systems that are embedded in the sea ice-ocean models

and do not require file input and output in the DA step. This has

been done efficiently in some coupled sea ice–ocean model

frameworks (e.g., Mu et al. 2020; Nerger et al. 2020).

Reducing the observation error from 10% to 5% also im-

proves our DA performance, while increasing the error to 15%

always produces larger SIC RMSE. The current satellite re-

trievals of SIC observations have uncertainties larger than 5%,

and can be as high as 20% over thin ice (Ivanova et al. 2015).

FIG. 7. Time series of regional and pan-Arctic September sea ice extent (SIE) from 1982 to 2017 for FREE (blue),

noDA-SSTrest (orange), DA-noSSTrest (purple), DActr (red), the NSIDC NT product (black solid), and the

NSIDC BT product (black dashed).
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The DAErrS experiment result indicates that improving the

quality of observations provides the potential for a better SIC

DA result as such improvement would provide a justification

for using a smaller observational error.

The DA performance is least sensitive to the localization

half-width. The strictest localization (DALocS) has a half-

width of;64 km and hence the influence of a given observation

will be spread over a few model grid cells within the radius of

FIG. 8. Linear trends of SIE in the Arctic regions for March and September for FREE (blue), noDA-SSTrest

(orange), DA-noSSTrest (purple), DActr (red), the NSIDC NT product (black), and the NSIDC BT product

(gray). Each error bar represents one standard deviation of the linear regression coefficient (the trend). The ex-

periments are conducted from 1982 to 2017.
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;128 km, given that the 18 grid has spacing of 40–50 km in the

Arctic. By increasing the localization half-width, we let ob-

servations influence more neighboring grid cells. DALocS

produces slightly yet persistently higher RMSE than DActr.

Further relaxing localization by increasing the half-width from

0.03 radians (DActr) to 0.05 radians (DALocL) does not show

an obvious reduction or even slight increase in RMSE, which is

presumably due to the high density of the satellite observa-

tions. The sensitivity of DA to localization depends on the

observation density, model resolution, and the correlation

length scale of the observation. Hence the choice of a locali-

zation half-width of 0.03 radians that fits our model configu-

ration may not be proper for other DA systems.

d. Impacts of SIC DA on SIT and sea surface salinity

The thickness of each category remains unchanged during

DA, but the grid cell averaged SIT is updated by changing the

ice concentration of each category. We compare the grid cell

averaged SIT of our experiments with Pan-Arctic Ice Ocean

Modeling and Assimilation System (PIOMAS) SIT in Fig. S4.

The experiment FREE generally has thinner sea ice than

PIOMAS except in the GIN Seas and Canadian Archipelago.

Meanwhile, FREE has general positive SIC/SIE biases (Figs. 5

and 6), even in regions where SIT is thinner than PIOMAS SIT.

As a result, the SIT of the DA experiments is further thinned

relative to PIOMAS via the removal of ice during SICDA. This

occurs in most regions, except the GIN Seas and Canadian

Archipelago where the removal of ice improves the FREE run’s

thick bias.

Whether SIC DA improves or degrades SIT is still debat-

able. First, it depends on how SIT is updated within the SIC

assimilation procedure (Tietsche et al. 2013). The updating

method that leads to significant improvement in SIT in Tietsche

et al. (2013), however, creates a SIT drift in Kimmritz et al.

(2018) and Zhang et al. (2018). It also depends on the consis-

tency between the SIC/SIE bias and SIT bias in the model. The

FIG. 9. Detrended correlations between the observed SIE and the modeled SIE for the experiments FREE

(blue), noDA-SSTrest (orange), DA-noSSTrest (purple), DActr (red), and SPEAR-Nudged (green) for the Arctic

regions. Months when the standard deviations of the observed SIE are larger than 0.01 million km2 are shown. The

NSIDC NT observations are used in the calculation. Each error bar represents two standard deviations of corre-

lation coefficient calculated from a bootstrap procedure.
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studies that achieved significant improvements in SIT tend to

have consistent positive SIE/SIC and SIT biases (Mathiot et al.

2012) or negative SIE/SIC and SIT biases (Tietsche et al. 2013)

in their models compared to the studies finding mild or no

improvements in SIT (e.g., Kimmritz et al 2018; Zhang

et al. 2018).

Our study chooses the SIT updating method that pre-

serves the mean sea ice thickness of each category, which is

FIG. 10. RMSEregion of sea ice concentration (SIC) in selected months for the Arctic regions for the DA ex-

periments: DActr (red), DALocS (blue), DALocL (green), DAErrS (pink), DAErrL (purple), DAFreqH (or-

ange), and DAFreqL (brown). RMSEregion is calculated against the NSIDC NT observations from 1982 to 1991.

Each error bar represents two standard deviations of RMSEregion calculated from a bootstrap procedure.
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demonstrated not to cause SIT drift and has limited influ-

ence on SIT (Tietsche et al. 2013; Kimmritz et al. 2018;

Zhang et al. 2018). The model in this study has opposite signs

of biases in SIC/SIE and SIT. As a result of generally re-

moving SIC during DA, the updated SIT is further thinned

relative to the FREE experiment. Consequently, the DA

sensitivity experiments that have better performance of SIC/

SIE (DAFreqH and DAErrS) also have thinner biases than

DActr (figures not shown).

We do not consider the conservation of freshwater or salt in

the SIC DA.When sea ice is added or removed, the freshwater

and salt are not modified accordingly, which is a common

choice made in DA studies. As a result, the sea surface salinity

(SSS) is generally saltier in the DA experiments than in FREE

(Fig. S5), which is due to the general removal of sea ice by DA.

The differences of SSS between the experiments are relatively

small compared to their differences with the restored clima-

tology (Fig. S4b). This shows that the impact of SICDAon SSS

is modest relative to the biases of themodel. The central Arctic

SSS in DActr is much fresher than the Atlantic influx water

(;35 psu) and thus it is unlikely that SIC DA will cause spu-

rious convection.

e. Prospects for improved summertime predictions of Arctic
sea ice

Previous studies suggest that the anomaly persistence of SIE

is themajor predictor of summertimeArctic sea ice at the short

lead times, while the anomaly persistence of SIT is the key for

longer-term predictions (Blanchard-Wrigglesworth et al. 2011;

Sigmond et al. 2013; Bonan et al. 2019). The lagged correla-

tions between observed September SIE and SIE/SIT of earlier

months from DActr (Fig. 11) are good indicators of the

model’s forecast skills at different lead times (Bonan et al.

2019). We also show the autocorrelation of SIE in the obser-

vation that indicates the persistence of SIE in reality. The

correlation between the observed September SIE and SIE of

earlier months from the model is very close to that of the ob-

servation. This confirms that our SIC DA has done well in

capturing the anomaly persistence of SIE. It decays relatively

quickly with increased lead time. The correlation between the

FIG. 11. Detrended correlations between the observed September SIE and the modeled SIE in earlier months

(red solid), the modeled SIV in earlier months (red dashed), and the observed SIE in earlier months (black solid).

The NSIDC NT observations are used in the calculation.
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observed September SIE and the modeled SIV of earlier

months is flatter. It has smaller values than that of SIE in the

zero- to one-month lead times in most regions and has larger

values in lead times longer than one month except over the

Beaufort Sea and Pan-Arctic. This confirms that SIE is a better

predictor for near-term September Arctic sea ice predictions

but the prediction skill from the memory of SIE decreases with

time more quickly than that from SIV. Beyond a few months,

SIV is more important for prediction skill than SIE. Thus, our

success in improving SIE provides bright prospects for im-

proving summertime Arctic sea ice predictions at short lead

times, and future work on SIT assimilation is needed to im-

prove skill at lead times of two months and beyond. Dedicated

dynamical forecast experiments that explicitly evaluate the

impact of these improved SIC initial conditions on forecast

skill are required to properly demonstrate this. This is planned

as future work.

4. Conclusions and discussion

This paper documents the first effort in assimilating sea ice

observations into the GFDL sea ice–ocean model. The GFDL

Sea Ice Simulator version 2 (SIS2) is coupled with theModular

Ocean Model version 6 (MOM6) and driven by the Japanese

55-year Reanalysis (JRA-55-do) atmospheric forcing. SIS2 is

linked with the Data Assimilation Research Testbed (DART)

to conduct data assimilation (DA) experiments. The satellite-

derived sea ice concentration (SIC) observations from the

National Snow and Ice Data Center (NSIDC) NASA Team

(NT) product are assimilated through an ensemble Kalman

filter (EnKF) in this study. Although variants of EnKF have

been applied in sea ice DA studies, they are not used exten-

sively in the current modeling prediction systems.

Previous studies have demonstrated the capability of the

GFDL prediction system in predicting summertime Arctic sea

ice (Bushuk et al. 2017). One of the major hurdles in near-term

prediction is the lack of knowledge of the sea ice initial con-

ditions.With the SICDAvia the ensemble adjustment Kalman

filter (EAKF), we show that the climatology, interannual var-

iability, and trends of SIC and SIE are largely improved, which

offers a more accurate sea ice initial condition for not only the

pan-Arctic but also the critical subregions. The lag correlations

between the September SIE and SIE/SIV of earlier months

indicate that the persistence of SIE anomalies is essential to the

summertime predictions of Arctic sea ice at lead times of zero

to one month in all the regions. Hence the improved initial

condition of SIE shows bright prospects for September pre-

dictions of Arctic sea ice at short lead times.

The assimilation of SIC is found to effectively reduce the

positive errors of SIC in the model and capture interannual

variations and trends with high skill. An overshooting problem

is identified in some regions where sea ice is removed abruptly

by DA and the ice-albedo feedback is triggered. This feedback

amplifies the initial reduction in SIC and results in negative

biases. To dampen the overshooting issue, we restore the sea

surface temperature (SST) to the daily Optimum Interpolation

Sea Surface Temperature (OISST), which shuts off the albedo

feedback and largely improves the DA results. SST restoring

can effectively correct negative biases, which offers comple-

mentary improvement to the SICDA.However, when positive

bias prevails, SST restoring is only effective in winter and does

not show additional improvements in summer because (i) most

of the positive biases are removed by the SIC DA and (ii) SST

is restored to the local freezing point, which does not promote

sea ice melting.

Analysis of the DA sensitivity experiments reveals that a

variation in DA frequency shows the largest perturbation to

the DA performance. The results suggest that daily SIC DA is

favorable, while monthly SIC DA degrades the DA perfor-

mance substantially. The experiment set with different obser-

vation errors shows that the SIC observations of higher quality

have the potential to improve the SIC DA results. By relaxing

the localization, we get slightly better results, but the im-

provement saturates as the localization half-width approaches

the correlation length scale of the observation type.

The evaluation of the impact of SIC DA on sea ice thickness

(SIT) shows that whether SIT is improved or degraded de-

pends on the updating method and also the signs of biases in

SIC and SIT. Our model has a positive bias in SIC and a neg-

ative bias in SIT. By removing SIC, we reduce SIT as well,

which leads to a further thinned sea ice pack. Based on pre-

vious studies and our study, it is still debatable whether SIT can

be improved by SICDA. Studies with like-signed biases in SIC

and SIT report SIT improvements, whereas this study with

opposite-signed biases reports an SIT degradation. This im-

plies the importance of assimilating SIT observations directly

and we plan to conduct SIT DA in the future work. The in-

fluence of SIC DA on the sea surface salinity (SSS) is modest

relative to the biases of the model.

In summary, our results agree with previous sea ice DA

studies that applying an EnKF to assimilate SIC could largely

improve the pan-Arctic sea ice extent. In addition, we evaluate

the DA performance at regional scales and demonstrate that

the trends, interannual variability, and climatology of the

critical subregions are improved as well. During the sea ice DA

practice, we identified an overshooting problem that may be

common in the ocean–sea ice weakly coupled DA systems,

which could cause degradations in sea ice DA performance.

We suggest that applying SST restoring or DA in combination

will ameliorate the overshooting issue. Our study also offers

insights into how DA options may influence the performance,

which has been rarely examined by previous studies. DA fre-

quency causes the largest perturbation and daily DA is rec-

ommended as computational resources allow. The choice of a

smaller observation error leads to decreased RMSE, indicating

the potential benefits of higher-quality observations. A locali-

zation half-width around 190 km is ideal for conducting SIC DA

with our ocean–sea ice model at 18 resolution. We suggest that

future SICDA design studies consider localization tuning based

on their assimilated observation type and model configurations.
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